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"RESONANCES IN ELECTRON-MOLECULE SCATTERING
AND PHOTOIONIZATION

B.I. Schneider and L. A. Collins

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

The development of reliable theoretical models for calculating
the decay of quasi-stationary states of molecular systems has
becor. an important endeavor for theoretical chemists. The
und:vstanding and analysis of a wide variety of physical and
chen,” al phenomena depend on a knowledge of the behavior of
these states in both collisional and photoionization prob-
lems. In this article we describe the theory and calculation
of Lhese cross sections using our Linear Algebraic/Optical
Potential method. The theory makes optimal use of the numeri-
ical methods developed to solve large sets of coupled integral
equations and the bound state techniques used by quantum chem-
ists. Calculations are presented for a representative glass
of diatomic and triatomic molecules at varying levels.of
sophistication and for coliisional and photoionization cross
sections.

Introduction

The formation and subsequent decay of highly excited neutral
molecules and molecular negative ions plays an important role in
many physical and chemical problems (1,2,3). These metastable
states are formed when electrons co1lTHe with or are ejected from
molecular systems. Consequently they are seen in photoionization
cross z~ctions (4,5) as well as collisional excitation problems
1nvolv1ng electroch. (6) vibrational, (7) and dissoctative channels
(8). The qua.i- -stationary nature of these temporary states has
interested thenretical chemists for many years. In fact a large
number of the early predictions and calculations of the energies of
these states were ba'ed on variants of bound state techniques used
widely in quantum chemistry. These methods exploited the localized
nature of the resonant scattering wavefunction. Later methods such
as the Stieltjes imaging (5,6) and complex co-ordinate techniques
(9,10) went further and chcu]ated the 1ifetime (width) of these
metastable states. However it should be recognized that these
resonant states are a subset of those treated by more standard .
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Kohn-variational (12, Schwinger-variational, (13) R-Matrix (i4),
and linear algebraic techniques (15,16) have been quite successful
in calculating collisional and photoionization cross sections in

- both resonant and nonresonant processes. These approaches have the

advantage of generality at the cost of an explicit treatment of the
continuous spectrum of the Hamiltonian and the requisite boundary
conditions. In the early molecular applications of these scattering
methods, a rather direct approach based on the atomic collision
problam was utilized which lacked in efficiency. However in recent
years important conceptual and numerical advances in the solution of
the molecular continuum equations have been discovered which have
made these approaches far more powerful than those of a decade aqgo
(13,15,16). These new methods make extensive use of the ideas of
bound state quantum chemistry to treat electron exchange, polariza-
tion and correlatior (17,18). On the other hand they treat the
molecular scattering function either numerically or in a basis set
of numerical continuum functions (19). This has the advantage of
providing an accurate representation of the molecular continuum
function without causing undue strain on the numerical representa-
tion. In the nexi section we develop one of these approaches, the
linear algebraic/optical potential method (LAMOPT) (15), in some
detail. The last section is devoted to discussing the numerous
applications to photoionization and electron scattering which have
been made with the method as well as some earlier work on e+N,
vibrational excitatien (7) using the R-matrix technique.

Theoretical Methods

One of the more important features underlying all of the theoretical
approaches used in the molecular continuum problem {is the division
of space into a strongly and weakly intereacting part. This
division may be performed in function space as in the early
"stabilization" method (3) or in co-ordinate space as in the
R-matrix method (14). In the strongly interacting subspace, it is
necessary to dcal with all the complications of the full many-body
problem. However, the strength of the interaction in this reqion is
such that the difference between bound and continuum states 1s not
substantial. These facts are what led to the early successes of the
stabilfzatinn, Stieltjes and complex c¢n-ordinate methods in treating
resonances. The difficulties of applying these approaches to the
entire molecular continuum led to the development of more powerful
techniques. The R-matrix method, which had some spectacular
successes for atomiz collisions (20), seemed an excellent choice to
fi1l the void. One of the most attractive features of the method

is 1ts use of a discrete hasis set to expand the continuum orbital
in the inner R-matrix region. The application of the standard
Gaussian and Slater hasis sets in the R-matrix formalism was made
practical by the use of the Bloch -operator formalism (2.,22).
This was successful in a number of cases (23,24,25) most notably
e-N, scattering. However certain difficultTes arose which pointed
to the need of more general and flexible basis sets for rapid
(practical) convergence. In spite of these difficulties the
physical division of space tnto an internal ard extgrna! region
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éiﬁ]oiting fhé different physics of the two regions optimally and
adapting the mathematics to accomplish the purpose in the most
efficient manner. We proceed by defining

(H+ L -E)|v) =€, |¥) (1a)
in the internal region, where
X = J?} + Te + veT + TR (1b)
.Z?T = Target electronic Hamiltonian (1c)
Te a Kinetic energy of the scattering electron (1d)
n
q Z n
VeT = Electronic potential = - L _E_ﬂ:- + I r 1’ (le)
q ' q'rel 1=1 |re-r1|
TR = Nuclear kinetic Energy = - l- ) VE (1f)
(4
q q
1., 2
£z - '{E |c) &(rg-a) (F; - b)(c| (19)
a = R-matrix radius (ih)
b = Surface 1ng derivative (11)

and Ic) is a target eigenfunction of #7.

Aside from the Bloch & -operator, «#£, which is added «nd
subtracted to the Hamiltonian to ensure Hermicity, the division into
target and incident particle Himiltonian is standard. In ecuaticn
(lg? we have only allowed for open electronic channels. A Bloch
operator for the nuclear coordinate would need to he added if
diisgc1ation were included. A formal solution to th~ problem may be
written as

) = g 2,|v) (2a)
where
g = (42 .E)"] (2b)

By projecting equation (2a) onto the channels, |c). we obtain

aF
Felr) =% ggci(r{a) (55 = bF), (3)



and setting r=a, we get

oF
=1 Ree' (C
Fc(a) i. cc (ar ch,)a (4a)
R = gcc.(ala) = R-matrix (4b)

If one knows the functional form of F. at r=a it is possible b' a
simple matching procedure to extract ghe scattering information.
Alternatively, it is possibie to devise numerical procedures to
nropagate the R-ratrix from r=a to very large values of the radial
cqordinate. At these values of r, a matching to free waves is
possible. In order to do this it is necessary that the coupling
potential be local beyond r=a. In addition, if it is weak and
multipolar in form, the R-matrix propagation method (26,27) can be
made very efficient. In essense then the difficult part of the
calculation is the construction of the Green's function inside the
spherical surface r<a. As is true of all boundary value problems
there are essentialTy two methods for the construction of the
Green's function. The first and perhaps most sraightforward is to
construct solutions of the problem.

'” 7 - =
(F+ #-E[¥y) =0 (3)
which enables us to write
]
Yoy (r)v ()

gCC'(rlr') =§' Ei_? (6)

This spectral form has the advantage that a single diagonalization
of the Hamiltonian allows one to construct easily the R-matrix at
al) energies. In order to accomplish this it is necessary to
fntroduce a basis set of many-electron functions and solve equation
(5) variationally (23,24,25). The many-electron functions
themselves are constructed as products of one-eiectron orbitals,
expanded in some primitive basis set. For molecular systems with
more than one nuclear center the use of multicenter Gaussian or
Stater functions does much in representing the continuum function
near the nuclef. However these functions are not particularly qood
at representing the scattering function away frum the nuclet where
they oscillate rather than decay as true bound states. Thus one is
faced with the following dilemma: wuse large traditional basis sets
of Slater and/or Gausstan functions for which it is possible to do
the one and two electron i1ntegrals efficiently or look for a better
representation, By a hetter representation we mean either a more
efficient one-electron basis to expand the molecular continuum
function or an alternative procedure for the solution of the
equatton for the Green's function. In searching for a better
representation it should be realized that some of the numerical
procedures might have to bhe replaced by others which are not quite



so "simple" or efficient. Thus, for example, the use of numerical
continuum ortitals within the R-matrix formalism requires the use of
single-center expansion techniques and numerical quadratures for
certain classes of one and two-electron matrix elements. For
diatomics the procedure can be made reasonably efficient but for
polyatomics the jury is still out. The approach we have pursued
is rooted in the second method for the construction of the Green's
function. If we return to the integral equation (2) and divide the
Hamiltonian into an unperturbed (-*#,) and perturbed (V) part, we
may write

[¥) = (6, + G, Vg).#,|Y) (7a)
" 62,1 + G|
where
-1
Go a (’?6+5Eb-E) (7b)

The division of the Hamiltonian into an unperturbed and perturbed
part is of course arbitrary. However in most cases is chosen

to make the scattering particle Green's function simple to
calculate. Typiccl choices would be the target plus a free particle
or in the case of positive ions, target plus Coulomb wave. Equation
(7) has a particularly simple structure for the scattering of an
electron from a static potential. The basic starting point is the
expansion of the wavefunction, Green's function and potential in
spherical harmonics. In contrast to atomic scattering problems, the
patential is not diagoral in the anqular momentum quantum number of
the scattered electron 2. This leads to the following set of
coupled integral equations,

oY

¥ (r) = §,(r]a) (ar_z by ), zf I Gz(rlr')sz'(r'wl'(r'zgg;
where
Grr') = Ry(r)y(ry) (8b

The Green's function is chosen to satisfy the boundary condition
demanded by the R-matrix method. This is easily accomplished by
choosing Rz(r) to he regular at the origin and requiring

dli
F— ° bl (8c)

at re=a, The linear algebraic method proceeds by introducing a
quadrature scheme into the set of equations (Ra) to get
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¥, (ry) = Gl(rila)(ﬁi - b¥,), + T Gylryr WV, ()Y (1))

| L] (9
By defining
i gy = SagrSiy m GplryrWyVoilry) (10)
one obtains
a‘l’z I
The solution may be written as
-1 Ny
wl(r'i) = !'?JU”li,l'j G 2'(rj|a) ("Sr_— - b\yl')a
awz,
i,Yzi,z'a (ar - by z')a (12)

Setting r,=a gives

3‘?2-

3‘{’11
¥,(a) = i. Yza,z'a(ar

= = b¥

=b¥ ) - I Ry, (37

: s

(13)
The R-matrix 1s thus seen to be the value of the full Green's
function on the surface of the sphere enclosing the internal

region, The solution of equation (11) may be accomplished using
standard techniques of linear algebra (28). The reduction to a
matrix equation has the advantage that vector nrocessors such as the
CRAY I can solve such equations 15-20 times faster than scalar
computers, If the matrices become too large for central memory,
partitioning techniques and/or iterative wmethcds may be used to
solve the equations. These approaches may slow down the calculation
soinewhat but experience has shown that the methodology is stil!
qutte efficient. Perhaps the greatest difficulty with the LAM as we
have described it 1s the use of the single-center expansion method
to obtain equation (8a). It has been known for many years that such
single-center techniques are very slowly convergent for molecular
systems. The situation for the calculation of bound states 1s much
worse than for low energy electron scattering due to the strong
dependence of thc energy on the region near the atomic nuclei. For
continuum electrons, which do not penetrate too deeply into the
electron cloud, the expansion is slowly convergent but practical
techniques can be developed to aid the convergence. The use of the
spherical harmonic expansion at the level of equation (8) may in
fact be superior to using numerical continuum functions and
multicenter functions in the standard R-matrix formalism. The
latter approach requires the single center decomposition of the



required two-electron matrix elements. The LAM "matrix elements"
are very simple functions requiring little computational effort for
their formation. The major effort is placed on the solution of the
linear equations, which are well suited to vector prescriptions. In
addition schemes can be devised which utilize different quadrature
meshes for each nartial wave., Since the higher partial
wavefunctions are strongly peaked near the nuciear singularity and
die off quite rapidly thereafter, it is possible to get accurate
representations with very few points. This is very similar in
philosophy to the use of multicenter basis sets in conventional
approaches. Another approach would be to combine a multicenter
basis set expansion with the numerical wavefunction for low partial
waves,

. L 2
¥(r) = £ & F
2=0 m=-%

Q) +zCo (r) (14)

r)Y, (
am q qq

lm(

By substituting Equation (14) into Equation (2a) we can derive a set
of coupled equations for FZm(r) and C,. These may in turn be
reduced to linear algebraic equations by introducing Guadratures.
The advantage of this latter approach is the possibiiity of
represegting the large number of high angular momentum terms by a
few ¢ {r). In addition these functions could be chosen to be bound-
statedCartesian Gaussians for which much intuition has been
developed over the past few decades. However, like the standard
R-matrix method it is necessary to perform numerical integrations to
calculate the required matrix elements. The efficacy of this can
only be ascertained by experimentation. Now that we have outlined
the basic theory and numerical technique of the LAM let us turn to
the calculation of the exchange and courrelation terms which provide
the major difficulties of the full many-body problem.

Electron Exchange. The need for an anti-symmetric wavefunction for
incident and bound electrons gives rise to nonlocal interactions
which greatly complicate the solution of the scattering equations.
These exchange interactions have the form,

>

JK(F|FIF(FY) dF = e (71)

F(r')dr']e (r) (15)
+ > B
|r-r|

where oB(F) is a bound-state molecular orbital and K(rlr') is the
exchange kernel. The difficulty with these interactions is not so
much their nonlocality as their nonsepaiability. The nonsepara-
bility arises because the, interagtion #— does not decompose into
a produci of functions of r| and r,, If bhe examines these
exchange operators more closely one notices that they are

rather short range functions, The reason for this is the quite
physical fact that the incident electron can only exchange with a
bound state electron when the two are close toqeiher. I3ince the
electron cloud of the atom o molecule 1s spatially localisred
these interactions fall off quite rapidly away frem the carget.
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These considerations suggest that it should be boégible to expand»
these integral kernels as a sum of separable terms (15,16) using
bound state functions as the expansion set,

K(FIF') = £ @ (F)K,.0.(r") (16)
l i, i ij J

The advantage of equation (16) is twofold. First, the
nonseparability is avoided by using a basis set (separable)
expansion of the operator. Second, the matrix elements K;; may be
extracted from standard bound-state programs available fro% a wide
variety of sources. In addition the matrix elements are independent
of energy and need be computed only once even if scattering calcula-
tions are to be performed for a range of energies. A practical
question which must be answered is the rate of convergence of the
separable expansion. Numerous calculations at the static-exchange
or Hartree-Fock level on a wide variety of diatomic and triatomic
molecules have shown quite rapid convergence. In fact, in many
cases, the use of standard SCF basis sets has given results of
10-20% accuracy. By augmenting these sets slightly, we can reach
the 1-5% level of accuracy with little difficulty. Another feature
of the use of separable expansions may be illustrated by considering
the following equation, .

(£-6) |F> = |x><¢|F> (17)

where is a local operator. The solution of equation (17) may be
written as

|F> = |FO> + |F1><¢|F> (18a)
where

(SI.,‘-J)|F0> =0 (18b)

(2-&)|F! = |0 (18¢)

The unknown constant, <¢lF>, may be determined after the solution of
equations (18b,c) by quadrature. The generalization to an n-term
separable expansion is straightforward requiring n inhomogeneous
equations to be solved and the inversion of an (n*n) matrix for the
unknown constants. The procedure is quite similar to the treatment
of LaGrange undetermined multipliers in standard scattering
formalisms. The method is particularly convenient for the LAM since
the most difficult computational step in the scattering involves the
reduction of the algebraic matrix to LU form where L(U) are lower
(upper) trianqular matrices. The work required for additional
right-hand sides (inhomogeneities) is usually quite small. The
reduction in computational time which is achieved by the use of
separable exchange varies from factors of about 3 to 10 over

standard approaches. This savings in time increases dramatically
with the number of incident eneraies sinra ac mentinnad ahnua tha



difficult step in the calculation, the formation of the Kj; matrix
elements, is energy independent. The success of the separgble
expansion for exchange led us to ask if il would be possible to
extend this kind of approach to the treatment of polarization and
correlation and ultimately to the treatment of inelastic

scattering. The results of that inquiry appear in the next section.

Polarization and Correlation. In order to satisfactorily explain
The details of Tow-energy elTectron-molecule collisions it is
necessary to go beyond the static-exchange level and include
correlation effects. It has been known for many years that a
straightforward close-coupling expansion is very slowly convergent
for elastic scattering for many systems. The basic difficulty is
that the physical closed channels are tno delocalized in space to
adequatnly describe what is happening near the bound electrons.
Pseudostates, (11,12), which are usually derived from a perturbation
treatment of the distortion of the molecular charge cloud by an
electric field, are far better functions for treating polarization
and correlation. These pseudostates may be used directly in the
close-coupled equations or included in the open-channel space as a
nonlocal energy-dependent optical potential. The latter approach
has the advantage of being able to include more functions by using
bound-state matrix methods. In addition, the dimensionality of the
scattering equations does not increase beyund the static-exchange
approximation. However in order to efficiently use the optical
potential formalism it is necessary to be able to calculate and
manipulate the required Hamiltonian matrix elements rapidly. Since
bound state configuration interaction (CI) programs were developed
by quantum chemists for just this purpose we began to examine the
possibility of using them in the scattering problem. In order to
proceed, it iu essential for the purpose of the formalism as well as
the numerics *o introduce a basis set expansion of the continuum.
This expansics must be complete enough to represent the important
physical effeccs in the problem. In contrast to the exchange
kernel, the optical potential has some long-range character which
suggests convergence may be somewhat more difficult than for the
static-exchange .ase. Again, only numerical experimentation would
allow us to decide on the.efficacy of the approach. From a purely
formal standpoint the partitioning of function space into an open
sgg)and closed (Q) channel part results in the following equation,
—r

-1 i
[”PP +& - E +."$Q(E' Jl’q ) :7fQP]P|\r> = .‘Z’bPl‘l’)

Q

for the scattering electron, where
P = zIA(¢0(1-N)Fq(N+1))><A(¢0(1-N)FQ(N+1)) | (20a)

P+Co=l (20b)

The Q space configurations, which contain single, double etc,
excitations dway from the reference set, account for the



polarization and correlation. The use of the discrete expansion
enables us to write,

=.% C -1 = !
Voot =Fpq(E- #) ™ #p = m>:B|Fo‘>\,mB(E)<FB| (21)

which is, of course, a separable form (16,17,18). Thus the
formation of the optical potential requires a standard CI program to
form the matrix elements and the solution of the linear equations,

(E-Hq) Xp = #gp (22a)
Hookep = Vopt (22b)

to get the matrix optical potential. The essential difference
between the problem with and without correlation ic the need to
construct V,,4 at each incident energy. This in turn requires

that equatioﬁ (22) be solved numerous times. However, the
Hamiltonian matrix need be computed only one time. Once the optical
potential is formed the solution of the scattering equations is
identical to that of the static-exchange case. Thus computer codes
which were developed for the static-exchange problem may be used
without any modifications. This is a great advantage of the optical
potential formalism. In all of the applications made so far,
¢o(1-N) has been chosen to be the Hartree-Fock wavefunction of the
target. Thus the P-space consists of the static-exchange
configurations., Since it is impossible to use a complete expansion
in Q-space, it becomes quite important to choose the correlating
orbitals and configurations to reflect the physics of the low-energy
scattering process. A primary consideration is, of course, an
accurate represention of the polarization of the target by the
incident electron and the subsequent back-reaction of the polarized
target on the electron. An elegant way to accomplish this is to use
polarized orbitals extracted from a coupled Hartree-Fock
calculation. These functinns accurately represent the dipole
distortion of the molecular target in the presence of an electric
field. By adding a further set of diffuse atomic functions to
represent the "continuum" electron we can adequately span the space
¢ the electrons. The Q-space is constructed by taking
antisymmetrized products of the polarized and scattering orbitals in
which an occupied and scattering function are singly excited. These
configurations are all single and double excitations away from the
static-exchange reference set. However they do not include any
double excitations of the core electrons. Such excitations would
correlate the core electrons, an effect which we wish to exclude
from present calculations. Thus we try to place our efforts on the
differential correlations induced by the incident electron rather
than the full (N+l) electron problem. In most cases this has been
gquite satisfactory in bringing the calculations into yood agreement
with experiment (17,18). However a more general treatment is needed
in which target and induced correlations are treated in a balanced
fashion. Such a treatment is currently under investigation and will
be reported upon in later publications.
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Before closing this section it is worth mentioning & new
development in the treatment of electronically ineiastic collisions
which is related to the above discussion. Recently (30) we have
shown that it is possible and practical to place the off-diagonal
channel-channel interactions in separable form. This leads rather
naturally to a formalism in which it is only necessary to solve
inhomogeneous, elastic scattering equations for each channel. The
reduction in dimensionality from a coupled to a single-channel
problem makes the equations much more tractable. The final sclution
to the coupled channel problem is determined by inverting a matrix
whose dimension is the number of expansion functions used for the
coupling matrix elements. Optical potentials may be incorporated in
the coupling matrix with little additional effort. The method has
been successfully applied to the ls-2s-2p close-coupling equations
in atomic¢ hydrogen (30) and molecular applications are underway.

Now let us turn to the extension of the formalism to molecular
photnionization.

Photoionization. The photoionization process,

AB + hv » ABt + e (23)

can be characterized by the dipole matrix element between the
initial bound state of AB and the eiectron-ion continuum wavefunc-
tion of the final state. Since the final state is no more than the
scattering wavefunction for an electron on a molecular ion, it is
quite easy to adapt the LAMOPT formalism to photoionization (29).
To accomplish this two things are required: the replacement of the
free-particle with the Coulomb Green's function and the calculatinn
of the bound-free dipole matrix element. From the latter quantit.,
the angular distribution of the photoelectrons

o.(2) = Agy + Ayy Polcos 8) (24)

and the total photoionization cross section op can be calculated.
Both guantities are simply related to

M,
d = <ep |rY

m lm“lw > (25)

m'm" =m-m
i

ma

where ¢ | (¥gm) is the bound (continuum) orbital of the electron
and m;(m) is the azimuthal guantum number. In all of the
applications of the LAM to photoionization we have calculated
wavefunctions for both the bound and continuum electrons at the
Hartree-Fock {HF) level. The bound orbitals are taken as solutions
of the neutral Hartree-Fock equations. The continuum orbitals are
calculated nsing the frozen-core approximation by which the

HF orbitals of the neutral, taraet molecule are used to represent
the ion core (FCHF). This leads to considerable simplification in
the form of the dipnle matrix elements reducing them to one-electron
integrals. Since the hound and continuum electrons are not
solutions of the same one-clectron Hamiltonian it is necessary to
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of the orbitals. This leads to a continuum improved virtua! orbital
(IVO) equation of the formn

(h + f (2a1J1-b1K1) 'E)|'zm> a : xq oq> " (26a)
a ,b = coulomb, exchange orbital occupancies (26b)
i d
'{ A = LaGrange multiplier (26c)
- q

for ihe continuum electron. This is solved using the LAM.
Now that we have described the formaii:m in some detail, let us
look at our applicatiuns to resonant processes.

Applications

Electron + N, Scattering. The scattering of low-energy electrons
from N, is one of the most thoroughly studied problems in molecular
physics. The primary reason for this i1s that the cross section is
dominated by a low-energy x, (2.4 eV), shape resonance which has
profound erfects on the v?hﬂational excitation spectrum., Under
ordinary scattering situations the probability for nuclear
excitation by low-energy electrons is quite small due to the large
difference in mass of the *wo particles. However in a resonant
process the electron can distort the charge distribution of the
target sufficiently to cause great changes in the forces on the
nuclei. It 1s these changes which cause the vibrational excitation
not the direct impulsive force of the collision. The temporary
capture of the incident electron into the low-lying, n
anti-bonding.orbital of N, was put forth as the explangtion of the
excitation mechanism (2). Since this orbital has a significant
amount of valence character it can sufficiently change Lne potential
seen by the nuclei during the collision. These ideas were expanded
upon and refined by Herzenberg (32,33) and his collaborators using
the complex eigenvalue techniques of Siegert. The calculations
however remained semi-empirical and, although they gave good
argreement with the experiments of Schultz ?2)were dependent on a
semi-quantitative adjustable parameter. With the development of the
molecular R-matri. method it became possible to perform a first
principles calculacion of this process. However, in order to
accomplish this it was necessary to generalize the R-matrix method
to include nuclear motion. The generalization was accompiished hy
Schneider, LeDourneuf and Burke ?34). using the Born-Oppenheimer
approximation of the R-matrix levels of the (N+1) electron problem
as the zeroth crder approximation. The theory was successfully
applied by Schneider, LeDourneuf dand Lan (35) to the e+N, problem.
The results of that calculation, which are shown in Fig. 1,
demonstrated for the first time that an ab initio method could,
within the context of the Born-Oppenheimer approximation, explain
the resonant vibrational excitation process. Other calculations (6)
followed which confirmed the results of the R-matrix study. -
Recently (21) we have performed a series of calculations using the




cally demonstrated that the w, resonance is dominated by short-
range distortion. These ideas were implicit in the R-matrix calcu-
lations (35) which were based on -he negative ion SCF wavefi'nction
of N,. The N,~ SCF wavefunction dces not contain any excitation
which destroys the £, symmetry of the N, core. In fact to first
order in perturbatioﬂ theory the N,~ SCF wavefunction can be
obtained as a single-excitation CI using N, SCF orbitals. Hazi and
coworkers (6) used this equivalence and the Feshbach formalism to
obtain resuTts in good agreement with the R-matrix calculations of
Schneider, Lelourneuf and Lan. The recent LAM calculations given in
Table I also siow that one must be cautious in not overcorrelalating
the negative icn wavefunction with respect to the neutral molecule.
More extended duuble excitation CI calculations lowered the reso-
nance position and width below the experimental value demonstrating
these difficultivs rather dramatically. Finally, the calculations
show possible prohlems with semi-empirical theories using long-renge

Table I. Position and Width of 2m Resonance in N,
as 1 function of the type of calculation

Type of Calc. ER(eV) FR(eV)
Short and long range 2.03 .281
J references

Short and lonqg range 1.97 .264
6 references

Short and long range 1.66 .178
19 references

Short range 2.13 .314
3 references

Short range 2.07 .301

19 references

cutoff polarization potentials to explain the resonance (31).

These potentials, which have adjustable parameters, may be tuned to
reproduce the resonant features but it {is dangerous to place too
much emphasis on the forms of the interaction. The long-range
polarization potential has only a winor effect on the resonance in
N,; 1t 15 mainly a short-range effect. The dadjustment of the cutoff
in the model potential mimics these short-range features in a crude
but unfortunately unpredictable fashion. It may be unwise to rely
on the predictions of these modal potentials for other symmetries
which may ba dominated by quite different physical effects,.

Electron + H, Scattering. The low-enerqy elastic scattering of
electrons from F, shows a broad feuture which is due to a p-wave
shape resonance. In our calculations (17), no attempt was made to
treat this in any snecial fashion. The calculation was the first
one in which we included polarization and correlation using an

optical notential and the intent was to explain the low-enefrgy
behavior of the cross section. The raciilte whirh ava chaun in




Fig. 2, are in excellent agreement with exper1ment (39 40) over a
cons1derab1e energy range and clearly reproduce the E‘b’? shape
rescnhance mentioned above. The optical potential was con-tiructed
from a set ¢ one-electron functions incorporating the SCF
distortions of the target in the presence of an electric field.
These were coupled to the incident electron in the manner described
earlier and results in an optical potential of about 400 spin
eigenfunctions. The calculation required about 8 seconds of CRAY !
time per energy.

Electron + H,* Scattering. The first application of the LAMOPT to
moTecular ions was undertaken to try to resolve some differences in
the results obtained for e+H,* scattering by the Stieltjes calcula-
tions of Hazi (41) and those of the Japanese (42) using the Kohn
variational method (18). The calculations were performed with a
number of basis sets in order to understand any problems which might
have affected either previous set of calculations. Our early
results confirmed the position and width of the first resonance as
given by the Stieltjes method but produced higher resonances in poor
agreement with the Japanese and earlier close coupling

calculations. Since the basis set used for these calculations was
not designed to treat Rydberg like resonances, we modified it tol
include more diffuse orbitals of the proper symmetry and re-ran the
calculations. The results, which are shown in Fig. 3 confirm the
position and width of the lowest resonance and are in good

agrecement with the close-coupling calculations of Collins and
Schneider (36) and the Kohn variational results for the second
resonance. In addition a third resonance was found which is
considerably lower than that of the Kohn calculation. Although we
have not explored this Rydberg serics of resonances any further, it
is clear that the Kohn calculation for the third memher of the
series is much too high. In fact it lies above the ionization
potential of the H,* fon and must be an artifact of the poor basis
used in the Kohn calculation. The quality of the results obtained
by the optical potential approach for the e+H,* scattering gives us
much confidence in its application to more complicated problems. In
addition the calculations demonstrate that we can deal with ifonic as
well as neutral cystems and Feshbach as well as shape resonances
with the formalism.

Photoionization of N,. In this section we consider the following
processes,

kv
hv + N, +N;(3og"l) + e ‘k"“} (27)
u
. ko
+ -1

+ N?_ ("xu ) +e .knxq
k6

Xyq

for the ground state of N, (29). The first process has a broad 9
shape resonance. while the 1al ter nracece laade tn a ennrinne w. _



shape resonance at the frozen-core Hartree-Fock level (FCHF). Both
calculations were performed with a number of basis sets to represent
the exchange opeiator. In all cases very little sensitivity to the
basis was observed in the scattering function. However sensitivities
of the order of 10-20% have been observed in the cross section due
to the inclusion or exclusion of diffuse orbitals in the construc-
tion of the occupied molecular orbitals. Evidently the more aiffuse
charac?er of the integrand in the dipole matrix element is quite
sensitive to small components in the bound orbitals. Similar
conclusions have been observed by ONeil and Reinhardt in the
photoionization of H, (37). The results of our calculations are
shown in Figs. 4-6, where we compare with those of other appi oaches
and experiment (43). The agreement between the LAM and Schwinger
variational (SV) method is quite good. Reasonable agreement with
the Stieltjes method is observed for ionization from the 3¢

orbital. The ionization of the =,, orbital of N, is one of the
classic failures of the FCHF modef. The HF potential improperly
places a valence-like n, ortital above the ionization continuum.
Better calculations, sugh as those based on an random phase
approximation (RPAE) model (5) or optical potential formulation can
correct the difficulty and remove the spurious resonance. This has
already been done with the RPAE and calcuiations using our optical
potential approach will be undertaken in the near future when we can
deal with sets of coupled, open channels.

Photoionization of NO. We consider photoionization of the 2n
orbital of NO into ko, km, and k&,, continua (29). Our interest
in this process stemmed from a des¥re to resolve the rather large
difference. between the Stieltjes (44) and SVM calculations (45?
The results of our calculations and a comparison of theory and
experiment (46,47) is shown in Figs. 7-8. We ohserve no structure
in the individual partial photionization cross sections and must
conclude that these features are an artifact of the imaging
procedure or linear dependence in the basis set. Our calculations
are in reasonable agreement with the SV method, showing a number of
broad shape resonances whnse position can vary slightly with the
basis set. This is especially evident in the sharper o resonance.
As with N;, the difference between thc LAM and SVM results is
primarily due to the inclusion of diffuse orbitals in the bound
molecular orbitals. Very 1ittle sensitivity to basis was observed
in the scattering solutions.

Photoionization nflC02. We have considered the following
processes tor hotofonization of ground state CO, (gg):
-1
. 1<Jg 1 kou
hv + CO2 + C02 2c1.q + e
4o -1 km
g Xu

We are particularly interested in these processes since there are
considerble differences between the results of the Stieltjes method
on ore hand and those of the SV and LA method. The LAM and SVM both



predict rather narrow shape resonances in the loq and 4o
ionizations while the Stieltjes approach gives rgther brgad,
nonresonant shapes. The calculation of the continuum wavefunctions
for these channels represents a most strin-ent test of the
single-center expansion approach. Howeve, we have systematically
increased the number of partial waves in the calculation until we
are confident of a 5% or better convergence in the cross section.

In additiin we have explorad many basis sets, more or less
contracted or mare or less diffuse. Small difrverences beween the SV
and LA celculations can be noticed but nothing like the qualitative
differences with the Stieltjes approach. The final results for the
total cross section in these channels is given in Figs. 9-11. It is
difficult tc say why the agreement between the methods 1is so poor
for lo, and do, ejection processes., Earlier Stieltjes

calcu1gt1ons on the log photoionization by Daasch, Davidson, and
Hazi (38) have shown a“great sensitivity to both basis set and
imaging technique. Perhaps the difficulty is due to the inahility
of the Stieltjes method to place anough eigenvalues in the resonant
region. Since ‘he resonances in the lo, and 40, ionization
processes but not the 20, process are ag quite ﬂ1gh electron
energies, it could be di?ficult t~ produce a proper pseudospectrum
with conventional Gaussian type orbitals. This would also explain
why the low energy 20, results aaree in all three approaches. The
resolution of these d?fferences s not simple but we feel 1t 1s
imperative to try to do so. At present the Stieltjes method is the
only approach capable of dealing with complicated polyatomic
species. Its reliability must be tested aaainst other approaches
where such tests dre possible.

_C_O_nc'.u519_rl

Resonance phenomena have been shown to play a significant role in
many electron collision and photolonization prob?ems. The long
1ived character of these quasi-stationary states enables them to
influence other dynamic processes such as vibraticnal excitation,
dissoctative attachment and dissociative recombination. We have
shown 1t 1s possible to develop ab initio techniques to calculate
the resonant wavefunctions, cross sections and dipole matrix
elements required to characterize these processes. Our approach,
which 1s firmly rooted in the R-matrix concept, reduces the
scattering problem to a matrix problem. By suitable inversion or
diagonalization we extract the required resonance parameters.
Finally we have {1lustrated the power of the method by calculating
the cross sections for electron scattering or photoionization from a
number of diatomic and polyatomic molecules. These calculations
have been among the first to include polarization and correlation in
an ab initio way. The extension of our methods to inelastic
elactronTc processes and nuclear excitation and dissoctation are
underway and should appear soon,
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Figure 1. A comparison of experimental and theoretical vibrational
excitation cross sections for N, scattering.

Figure 2. Compariscn of theoretical and experimental total cross
sections for e-H, scattering. Curves are as follows: (1)
represents the e%fective optical potential; (2) represents the
experiment by Golden et al., and (3) represents the experiment by
Dalba et al. -

Figure 3. Elqenphase sums as a function of energy for the lzg
symmetry for e- Hz collisions.

Figure 4. Total ,€Toss sections for ttie photoionization of N,
leading to the X2I,* state of N,*(30 g -1y, Comparison of
theoretical methodg solid line, LAY dashed line, SV; chain-dashed
line, STMT.

Figure 5. Part1a1 aad total cross sections for the photoionization
of No(N,*x%c Comparison of the LA method and experiment:

solid line, ?o tal; chain-dashed line, 3o +kou, dashed line
3sg+knu; crosses. expt,

Figure . Partial cross sections for the photoionization of N,
leading to the A‘m, state of N +(ln -1y, Comparison of
theoretical methods for 1n +kn so]1d line, LA; dashed line,
SV.

Figure 7 Total cross sect1on for the photoionization of NO leading
to the X!n* state of No*(2n-!). Comparison of theoretical methods:
solid 1ine, LA; dashed line, SV; chain-dashed 1ine, STMT,

Figure 8, Part1a1 and total cross sections for the photolonization
-of NO (NO+ It*). Comparison of the LA method and experiment: solid
1ine, total; chain-dashed line, 2n+kw; dashed line 2n+ko; dotted
1ine, ?n+ké; ciosses, expt.; triangles, expt.

Figure 9. Partial and total cross sections for the photoionization

of C0,, (C0,*C°zo*). Comparison of the LA method with experiment;
snlid line, tota? chain-dashed line, 4o +kou. dashed line,
4cq+knu. crosses, expr

Fiqure 10. Part1a1 and total cross sections for the photofonization
of the 2ug orbital of CO, in the LA method.

Figure 11. Partial and total cross sections for the photoionization
of the loy orbital of CO, in the LA method.



